### Basic Concepts of Rigid Fiber Suspensions Rheology

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Park, J.M. and Park, S.J. 2011. Modeling and simulation of fiber orientation in injection molding of polymer composites. Mathematical problems in physics.

Duang-Hong, D., Thien, N.P., Yeo, K.S. and Ausias, G. 2010. Dissipative particle dynamics simulations for fiber suspensions in Newtonian and viscoelastic fluids. Computer Methods in applied mechanics and engineering. 199, Issues 23-24, 1593-1602.

Einstein, A. 1906. Eine neue bestimmung der molekuldimensionen. Ann. Physik, 19, 289-306.

Jeffery, G.B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, A 102(715), 161-179.

Leal, L.G. and Hinch, E.J. 1971. The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46, 685.

Leal, L.G. and Hinch, E.J. 1972. The rheology of a suspension of nearly spherical particles subject to Brownian rotations. J. Fluid Mech. 55, 745.

Hinch, E.J. and Leal, L.G. 1975. Constitutive equations in suspension mechanics. Part I. General formation. J. Fluid Mech. 71(3), 481-495.

Hinch, E.J. and Leal, L.G. 1976. Constitutive equations in suspension mechanics. Part II. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech. 76(1), 187-208.

Hinch, E.J. and Leal, L.G. 1972. The effect of Brownian motion on the rheological properties of a suspension on non-spherical particles. J. Fluid Mech. 52, 683.

Leal, L.G. and Hinch, E.J. 1973. Theoretical studies of a suspension of rigid particles affected by Brownian couples. Rheol. Acta, 12, 127.

Hinch, E.J. and Leal, L.G. 1973. Time-dependent shear flows of a suspensions of particles with weak Brownian rotations. J. Fluid Mech. 57, 753.

Batchelor, G.K. 1970. The stress system in a suspension of force-free particles. J. Fluid Mech. 41(3), 545-570.

Pabst, W. 2004. Fundamental considerations on suspension rheology. Ceramics-Silikaty 48 (1), 6-13.

Rodriguez, F. 1983. Principles of polymer systems. 2nd edition McGraw-Hill chemical engineering series.

Hand, G.L. 1961. A theory of dilute suspensions. Arch. Ration. Mech. Anal., 7, 81-86.

Crowe, C. 1982. Review-numerical models for dilute gas-particles flow. J. Fluids Eng., Tran. ASME 104, 297.

Doi, M. and Edwards, S. 1978. Dynamics of rod-like macromolecules in concentrated solution. I. J. Chem. Soc. Faraday Trans. II, 74, 560.

Doi, M. 1981. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci. Part B Polym. Phys. Ed., 19, 229-243.

Pipes, R.B., Mc Cullough, R.L. and Taggart, D.G. 1982. Behavior of discontinuous fiber composites: fiber orientation. Polym. Composites, 3(1), 34-39.

Agari, Y., Ueda, A. and Nagai, S. 1991. Thermal conductivity of polyethylene filled with disoriented short-cut carbon fibers. J. Appl. Polym. Sci., 43 (6), 1117-1124.

Eberle, A.P.R. and Baird, D.G. 2009. Using transient shear rheology to determine material parameters in fiber suspension theory. J. Rheol. 53(3), 685-705.

Massoudi, M. 2005. An anisotropic constitutive relation for the stress tensor of a rod-like (fibrous-type) granular material. Mathematical problem in engineering 6, 679-702.

Pipkin, 1972. Lectucres on viscoelasticity theory. Springer-Verlag New York-Heidelberg-Berlin, (1972).

Pabst, W. and Gregorova, E. 2003. Effective elastic properties of Alumina-Zirconia composite ceramics – part 1. Rational continuum theory of linear elasticity. Ceramics – Silikaty, 47, 1-7.

Atankovic, T.M. 2000. Theory of elasticity for scientists and engineers. Birkhauser, Boston.

Cintra, J.S. and Tucker III, C.L. 1995. Orthotropic closure approximations for flow-induced fiber orientation. J. Rheol. 39 (6), 1095-1122.

Atankovic, T.M. 2000. Theory of elasticity for scientists and engineers. Birkhauser, Boston.

Advani, S.G. and Sozer, E.M. 2003. Process modeling in composites manufacturing. Marcel Dekker Inc., New York.

Advani, S.G. and Tucker III, C.L. 1990. Closure approximations for three-dimensional structure tensors. J. Rheol. 34(3), 367-386.

Hand, G.L., 1961. A theory of dilute suspensions. Arch. Ration. Mech. Anal. 7, 81-86.

Lipscomb, G.G., Denn, M.M., Hur, D.U. and Boger, D.V. 1988. The flow of fiber suspensions in complex geometries. J. Non-Newtonian Fluid Mech., 26, 297-325.

Arrhenius, S., Z. Physik. Chem. 1, 285 (1887).

Advani, S.G. and Tucker, C.L. 1987. The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31(8), 751-784.

Folgar, F. and Tucker III, C.L. 1984. Orientation behavior of fibers in concentrated suspensions. J. Reinforced Plastics and Composites, 3(2), 98-119.

Bay, B.S. 1991. Fiber orientation in injection molded composites: A comparison of theory and experiment, PhD thesis, Mech. Eng., Univ. of Illinois at Urbana-Champaign.

Phan-Thien, N., Fan, X.J., Tanner, R.I. and Zheng, R. 2002. Folgar-Tucker constant for a fiber suspension in a Newtonian fluid. J. Non-Newtonian Fluid Mech., 103, 251-260.

Sepehr, M., Ausias, G. and Carreau, P.J. 2004. Rheological properties of short fiber filled polypropylene in transient shear flow. J. Non-Newtonian Fluid Mech. 123: 19-32.

Chung, D.H. and Kwon, T.H. 2002. Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation. J. Rheol. 46(1), 169-194.

Han, K.H. and Im, Y.T. 1999. Modified hybrid closure approximation for prediction of flow-induced fiber orientation. J. Rheol. 43(3), 569-589.

Chung, D.H. and Kwon, T.H. 1998. Improved closure approximation for numerical simulation of fiber orientation in fiber-reinforced composite. The Korean J. Rheol. 10(4), 202-216.

Chung, D.H. and Kwon, T.H. 2001. Improved model of orthotropic closure approximation for flow induced fiber orientation. Polymer composites, 22(5), 636-649.

Chung, D.H. and Kwon, T.H. 2002a. Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation. J. Rheol. 46(1), 169-194.

Hand, G.L. 1962. A theory of anisotropic fluids. J. Fluid Mech. 13, 33-62.

Jack, D.A., Schache, B. and Smith, D.E. 2010. Neural network-based closure for modeling short-fiber suspensions. Polymer Composites, 31(7), 1125-1141.

Shaqfeh, E.S.G. and Fredrickson, G.H. 1990. The hydrodynamic stress in a suspension of rods. Phys. Fluids, A, 2(1) 7-24.

Dinh, S.M. and Armstrong, R.C. 1984. A rheological equation of state for semi-concentrated fiber suspensions. J. Rheol. 28(3), 207-227.

Ericksen, J.L. 1960. Transversely isotropic fluids. Kollid-Z., 173, 117-122.

Batchelor, G.K. 1970. The stress system in a suspension of force-free particles. J. Fluid Mech. 41(3), 545-570.

Evans, J.G. 1975. The flow of a suspension of force-free rigid rods in a Newtonian fluids. PH.D. dissertation University of Cambridge.

Evans, J.G. 1975. The effect of Non-Newtonian properties of a suspension of rod –like particles on flow fields. in: J.R.A. Pearson, K. Walter, J.F. Hutton (Eds), Theoretical Rheology, Halstead Press, New York.

Batchelor, G.K. 1971. The stress generated in a non-dilute suspension of elongated particles by pure straining motion [J]. J. Fluid Mech. 46(4), 813-829.

Doi, M. and Edwards, S.F. 1979. Dynamics of rod-like macromolecules in concentrated solution. J. Chem. Soc. Faraday Trans. 2. 74, 1789, 1802, 1818 (1978); 75, 38.

Curtiss C.F., Bird, R.B. 1981. J. Chem. Phys., 74, 2016-2026.

Bretherton's, F.P. 1962. The motion of rigid particles in a shear flow at low Reynolds Number. J. Fluid Mech. 14, 284-304.

Akbar, S. and Altan, M.C. 1992. On the solution of fiber orientation in two dimensional homogenous flows. Polym. Eng. Sci., 32 (12), 810-822.

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.

**ISSN: 2454-7042**

Copyright © 2016 by** Global Publishing Corporation**

For any Technical Support contact us at **gjpeditor@gmail.com, editor@gpcpublishing.com**.